625 research outputs found

    Neutrino Physics

    Full text link
    The Standard Model has been incredibly successful in predicting the outcome of almost all the experiments done up so far. In it, neutrinos are mass-less. However, in recent years we have accumulated evidence pointing to tiny masses for the neutrinos (as compared to the charged leptons). These masses allow neutrinos to change their flavour and oscillate. In these lectures I review the properties of neutrinos in and beyond the Standard Model.Comment: 19 pages, contribution to the 2012 European School of High-Energy Physics, La Pommeraye, Anjou, France, 06-19 Jun 2012, edited by C. Grojean and M. Mulders. arXiv admin note: text overlap with arXiv:hep-ph/0506165 by other author

    Tau neutrinos from muon storage rings

    Get PDF
    Charged tau leptons emerging in a long baseline experiment with a muon storage ring and a far-away detector will positively establish neutrino oscillations. We study the conversion of νμ\nu_\mu (νˉμ\bar{\nu}_\mu) and of νˉe\bar{\nu}_e (νe\nu_e) to ντ\nu_\tau or νˉτ\bar{\nu}_\tau for neutrinos from a 20 GeV muon storage ring, within the strong mixing scheme and on the basis of the squared mass differences which are compatible with all reported neutrino anomalies, including the LSND data. In contrast to other solutions which ignore the Los Alamos anomaly, we find charged tau production rates which should be measurable in a realistic set up. As a consequence, determining the complete mass spectrum of neutrinos as well as all three mixing angles seems within reach. Matter effects are discussed thoroughly but are found to be small in this situation.Comment: 11 pages, 5 postscript figures (eps

    Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson

    Get PDF
    We exhibit a model in which a single pseudo-Nambu-Goldstone boson explains dark energy, inflation and baryogenesis. The model predicts correlated signals in future collider experiments, WIMP searches, proton decay experiments, dark energy probes, and the PLANCK satellite CMB measurements.Comment: 16 pages, 3 color figure

    MINOS and CPT-violating neutrinos

    Get PDF
    We review the status of CPT violation in the neutrino sector. Apart from LSND, current data favors three flavors of light stable neutrinos and antineutrinos, with both halves of the spectrum having one smaller mass splitting and one larger mass splitting. Oscillation data for the smaller splitting is consistent with CPT. For the larger splitting, current data favor an antineutrino mass-squared splitting that is an order of magnitude larger than the corresponding neutrino splitting, with the corresponding mixing angle less-than-maximal. This CPT-violating spectrum is driven by recent results from MINOS, but is consistent with other experiments if we ignore LSND. We describe an analysis technique which, together with MINOS running optimized for muon antineutrinos, should be able to conclusively confirm the CPT-violating spectrum proposed here, with as little as three times the current data set. If confirmed, the CPT-violating neutrino mass-squared difference would be an order of magnitude less than the current most-stringent upper bound on CPT violation for quarks and charged leptons.Comment: 18 pages, title change, version to appear in Physical Review

    Neutrinos that violate CPT, and the experiments that love them

    Get PDF
    Recently we proposed a framework for explaining the observed evidence for neutrino oscillations without enlarging the neutrino sector, by introducing CPT violating Dirac masses for the neutrinos. In this paper we continue the exploration of the phenomenology of CPT violation in the neutrino sector. We show that our CPT violating model fits the existing SuperKamiokande data at least as well as the standard atmospheric neutrino oscillation models. We discuss the challenge of measuring CP violation in a neutrino sector that also violates CPT. We point out that the proposed off-axis extension of MINOS looks especially promising in this regard. Finally, we describe a method to compute CPT violating neutrino effects by mocking them up with analog matter effects.Comment: 17 pages, 3 eps figure

    Cosmology and CPT violating neutrinos

    Get PDF

    Neutrino Physics (theory)

    Full text link
    Nonzero neutrino masses are the first definitive need to extend the standard model. After reviewing the basic framework, I describe the status of some of the major issues, including tests of the basic framework of neutrino masses and mixings; the question of Majorana vs. Dirac; the spectrum, mixings, and number of neutrinos; models, with special emphasis on constraints from typical superstring constructions (which are not consistent with popular bottom-up assumptions); and other implications.Comment: 13 pages, 6 figures, invited plenary talk at ICHEP200

    Combining LSND and Atmospheric Anomalies in a Three-Neutrino Picture

    Get PDF
    We investigate the three-neutrino mixing scheme for solving the atmospheric and LSND anomalies. We find the region in the parameter space that provides a good fit to the LSND and the SK atmospheric data, taking into account the CHOOZ constraint. We demonstrate that the goodness of this fit is comparable to that of the conventional fit to the solar and atmospheric data. Large values of the LSND angle are favoured and sin2(2θLSND)\sin^2(2\theta_{\rm LSND}) can be as high as 0.1. This can have important effects on the atmospheric electron neutrino ratios as well as on down-going multi-GeV muon neutrino ratios. We examine the possibility of distinguishing this scheme from the conventional one at the long baseline experiments. We find that the number of electron neutrino events observed at the CERN to Gran Sasso experiment may lead us to identify the scheme, and hence the mass pattern of neutrinos
    corecore